

EAA Chapter 166

Hartford, Connecticut

October 2025

WHAT'S INSIDE...

President's Message ...page 2

RV-12 Build Update ...page 3

Member Activity ...page 4

History Corner ...page 5

Flight Advisor ...page 7

NEXT MEETING

October 25, 2025, 10:00am

Steve's Hangar

CHAPTER OFFICERS

PRESIDENT Steve Socolosky (860)995-2886 soco7a@aol.com

VICE PRESIDENT John Baleshiski (860)965-4005 john@sheridan technolgygroup.com

SECRETARY
Dave Thompson
(860)655-6385
davesthomp@comcast.net

TREASURER
Brenda Rossignol
(860)227-4113
nbrossignol@comcast.net

NEWSLETTER EDITOR
Ashley Anglisano
aranglisano@gmail.com

PRESIDENT'S MESSAGE

by Steve Socolosky

Hello EAA 166 Members and Student Members,

Thanks to all who attended our last meeting, including Members and Student Members! We talked about a little business and a lot about flying and our RV-12, which taxied over so we all could see! Then, we watched it take off and fly! Of course, we also had hot dogs and hamburgers and all kinds of treats! Thanks to our Chef and Chief Cook, Steve Oakley and Members who brought food!

Please SAVE THE DATE! Saturday evening, November 8th, at the Hartford State Armory Officer's Club in Hartford, for our Annual Awards Dinner. This year we will be awarding TWO builders and their aircraft on their first flights! This event grows every year, so please be sure to speak with our Treasurer, Brenda Rossignol, to make your reservation! We'll also be voting on EAA Chapter 166 Officers for 2026, so if you're interested in helping out, even if not at an Officer's position, please let us know. We are growing and Members and Students Members have offered to help and we could always use a few more. Thank you!

We will be hearing from our current Ray Scholar, Justin Hotchkiss, on his flight training as he gets closer to earning his Private Pilot Certificate! You're doing great, Justin! How do you like that fancy, new headset?

Of course, Lindbergh Flyer's Club President, Rick Montero, will be updating us on the RV-12 as it progresses through flight test and you can also read about it later in this newsletter.

That's it for now! We hope to see you all on Saturday, October 25th at my hangar!

Thank you and BLUE Skies! Steve

EAA 166 RV-12 BUILD UPDATE

update and photos from Rick Montero

As reported in our last Newsletter, first flight occurred on September 15, 2025. It was a very good and most importantly, and uneventful flight. Since then, we have completed eight test flights, and so far, the RV-12 is performing as expected. We have completed some of the most high-risk

test flights involving stalls. The RV-12 is very well behaved in a stall as long as you recover quickly. After performing over thirty wing level stalls in various flight configurations, I've learned the RV-12 responds as expected in a stall and during the recovery. I also learned, if you hold the aircraft in a stall for too long, you may experience a significant wing drop, but if you execute a recovery promptly you can easily avoid a spin.

The early morning test flights John Balesheski and I have flown have been exciting and the views through the RV-12's Bubble Canopy are absolutely spectacular. The RV-12 is probably one of the most enjoyable aircraft I have ever flown and I look forward to completing the flight test program within the next month or so. Next up in our flight test program is to verify the Best Angle of Climb (V_x), Best Rate of Climb (V_y), and the Best Glide Speed (V_g). Once the flight test program is complete, we will schedule flights for any of our RV-12 Build Team members that want to experience a flight.

Rick Montero EAA Chapter 166 RV-12 Build Team Leader

Check out the latest build updates on our YouTube channel!

EAA166 Hartford, Connecticut

@eaa166hartfordconnecticut8 · 355 subscribers · 21 videos

More about this channel

Did you fly an interesting route this month? Land for a good \$100 hamburger? We want to hear about it! Submit any photos to aranglisano@gmail.com to be featured in our monthly newsletter column, Member Activity!

Our Ray Scholar, Justin Hotchkiss, being presented with a LightSpeed Zulu 3 Headset for completing his solo flight.

Enzo, who is also a Civil Air Patrol Cadet, becomes a Young Eagle!

EAA 166 Members watch as the fruits of their hard work, known as the RV-12, taxis up!

Larry Anglisano captured this shot from the RV-12 on approach to runway 2 at Brainard Airport after a successful flight

EAA 166 History Corner

by Bill Barry

On Saturday, October 2, 1920, Lieutenant Commander (LCDR) William Corry, and Lieutenant Junior Grade (LTJG) Arthur Wagner, flew from Mitchel Field, Mineola, NY, to Hartford, CT, on a cross country proficiency flight in a Curtiss JN-4. Since there were no airfields in the immediate vicinity of Hartford at the time, they landed on the grounds of the Hartford Golf Club. They stayed

US Navy JN-4H, circa 1918. (Source: Naval History and Heritage Command)

in Hartford overnight as guests of U.S. Army Colonel Hamilton Horsey.

LCDR William Merrill Corry, Jr., a 1910 graduate of the U.S. Naval Academy, had spent his first five years on active duty on the battleship Kansas. In 1915 he was among the first to begin Navy flight training. He was designated Naval Aviator #23 in March 1916. In the summer of 1917, he was sent to France to command the aviation school at Le Croisic on the western coast of France. During World War I he earned the Navy Cross and the French Legion of Honor for his daring flights and for his organization of bombing operations targeting German submarine bases. When the war ended, he was commanding the U.S. Naval Air Station in Brest, France. From there he helped to manage the demobilization of U.S. forces in France and Belgium. In the middle of 1920, he came back from Europe; assigned as the aviation aid to the Commander in Chief, Atlantic Fleet. This assignment is what brought him to New York.

LTJG Arthur C. Wagner had just earned his wings in 1919.
After a brief assignment to the USS Shawmut, he had been assigned to the Atlantic Fleet Ship Plane Division at Mitchel Field.

A March 1913 photograph of LCDR William M. Corry, Jr. (Source: US Navy)

LCDR Corry and his CT host, Colonel Horsey, had apparently become acquainted in Europe, where Horsey had served as the chief of staff for the U.S. Army's 26th Division during World War I.

Around 3 pm Sunday afternoon (October 3), Corry and Wagner took off from the Golf Club for the return flight to Mitchel Field. Wagner was flying from the front seat; Corry was in the rear cockpit. After a northerly takeoff, Wagner turned back south and flew over the golf course club house, where Colonel Horsey was watching. Horsey exchanged a wave with LCDR Corry. Shortly afterward, while the airplane was maneuvering to avoid some tall trees on the golf course, the engine quit and the JN-4 crashed to the ground from a height of about 75 feet. Corry was thrown from the plane and landed about 30 feet away. Wagner was trapped in the wreckage, which quickly caught fire. Despite several broken ribs, Corry rushed to the plane and tried to pull Wagner out of it. Even though his clothes caught fire, Corry kept trying to free Wagner. When 2 other people on the golf course came to help, they were finally successful at getting Wagner out of the burning wreckage.

Hartford Golf Club Club House, circa 1920 (Source: CT State Golf Association)

resented by Chadwicke-Jonnstone.

INSPECTION OF BRAINARD FIELD.

Brainard Field on June 21, 1921. (Source: CT Historical Society)

Quick work by those on the golf course insured that both Wagner and Corry made it to the hospital for treatment. Wagner was burned over most of his body, and he died about 8 hours later. Although Corry's burns were less widespread, the damage to his head and hands was especially bad. He died in the hospital four days later. For his bravery in the attempted rescue of LT Wagner, LCDR Corry was posthumously awarded the Congressional Medal of Honor.

This horrific accident also led to a decision by the city of Hartford to build its own airport. In early 1921 a 350-acre cow pasture was acquired by the city to create one of the first municipal airports in the country. Among the most active supporters of building an airport was Hartford Mayor Newton C. Brainard. When it was opened on June 21, 1921, it was named Brainard Field, in his honor. It served as the main general and commercial airport for central CT until the late 1950s, when commercial carriers relocated to Bradley International Airport. Now known as Hartford-Brainard Airport, it is, of course, home to our own EAA Chapter 166.

Aircraft Stability, Part III

by Kenneth P. Katz EAA Chapter 166 Flight Advisor

In August's Flight Advisor's Corner, the concept of stability was introduced. The October Flight Advisor's Corner presented a simple flight demonstration of stability to familiarize pilots.

This month, we will discuss stability testing of a homebuilt aircraft. As with any flight testing, planning should begin with the defining the objectives and then proceed to managing risk.

The objective is to determine if the aircraft is stable around all three axes, across the range of operationally relevant configurations and flight envelope.

There are a variety of risks when conducting this testing.

Risk: Aircraft is unstable.

Mitigation: The test pilot is trained to recognize stability (see Part 2 of this series). Ideally the training would encompass several different types of aircraft to increase the pilot's experience. Stability testing will begin at the most benign condition (CG at approximately 25% of the total range, measured from the forward limit) and then proceed to the forward and aft limits in steps. Response: If the aircraft becomes unstable, the pilot will need to use control inputs to maintain desired aircraft attitude, and fly to a flight conditions and configuration of known stability.

Risk: Aircraft is overstressed during testing.

Mitigation: The pilot makes small inputs during stability tests. In general, the aircraft should not exceed +/1 0.5G from the trimmed 1G initial conditions.

Response: If the aircraft is overstressed during testing, the pilot should use control inputs to reduce loads and land as soon as practical to conduct a structural inspection for damage.

Risk: Task saturation during testing leads to inattention which causes mid-air collision or flight into terrain.

Mitigation: Training (see Part 2 of this series) reduces cognitive workload on the test pilot. Conduct testing in non-congested airspace. Conduct a clearing maneuver before commencing a test point. Conduct testing at 3000 feet AGL or higher.

Response: If the pilot senses that he/she is becoming task-saturated, fly straight and level to "clear his/her head" before executing the next test point, or land and continue the testing on the next flight.

Risk: Ballast used to obtain desired CG location comes loose.

Mitigation: Design a ballast installation that will secure the ballast over the entire flight envelope, particular flight at less than 1G. Inspect and verify that the ballast is properly installed and

secure before each flight.

Risk: Flight control system anomalies and failures

Mitigation: Conduct pre-flight inspection of flight control system inceptors, components, surfaces, and their connections. Verify that controls are free and correct during the pre-take-off run-up.

Risk: CG range is outside the envelope, causing instability and/or loss of control. Mitigation: Gradually expand the testing over the CG range, starting at the 25% location. An accurate weight and balance measurement on the ground is essential before beginning flight testing and after any modification to the aircraft that would change the weight and balance. Calculate weight and balance before each flight, at fuel loadings ranging from the initial load to empty. Be sure to include the pilot, ballast, and other items in the calculations. Confirm that the

calculations put the aircraft within the weight and balance envelope for the entire flight.

The amount of flight testing for stability is determined by the degree of uncertainty. A new design that has never flown before requires a significant amount of testing, preferably including quantitative data collection and analysis. We will assume the more common situation in which the aircraft being tested is a proven kit built according to the instructions, in which case the more modest objective is to simply verify that the aircraft as built meets expectations.

The test plan should have a matrix of test points for stability testing. The typical variables of interest are:

- Airspeed
- Flap position
- Landing gear position (if retractable)
- CG location
- Axis (pitch, roll, and yaw)

The general approach for sequencing the test points is to start at the most benign condition and expand the envelope from there, changing one parameter at a time. For a typical light general aviation airplane, the first test point might be:

- 90 KCAS airspeed
- Flaps retracted
- Landing gear retracted
- CG at 25%

After the first test point, the subsequent test points might increase and decrease the airspeed in 10 or 20 KCAS increments in clean configuration towards the edges of the envelope, before introducing the flaps and landing gear.

Note that some sort of ballast probably be needed to achieve the full range of CG. Since the quantity and location of the ballast will need to change for each CG location and it is impractical

(and even if practical, potentially hazardous) to change ballast configuration in flight, each CG location will require its own test flight.

The basic flight test techniques in each axes are the same as were described in the stability flight demonstration of Part 2.

- 1. Set a trimmed initial flight conditions with the specified parameters and configuration.
- 2. Use the flight controls to introduce a small perturbation in angle of attack or sideslip angle. Again, this should be a gentle input.
- 3. Observe the response of the aircraft. The aircraft should be statically stable (the initial response is that the aircraft returns towards the initial condition) and dynamically stable (oscillations should be dampened and not increase in magnitude).

If the response is as expected, the pilot may proceed to the next test point in the flight plan. If the response is not as expected but also not unsafe, it would be beneficial to repeat the test point. Any unsafe response is reason to terminate the test and return for a landing at a known stable flight condition and configuration.

In general, one would expect a well-built airplane with a proven design to exhibit the expected stability response during flight testing. Unexpected stability response necessitates a careful investigation.

A professional, careful, and measured approach to stability testing will greatly contribute to having a safe and enjoyable homebuilt airplane.

